“这道题的答案是n(2n+1)?”
张磊瞪大着眼睛,沿着陆舟的推导算下去,好像的确没错……
从出题道陆舟走上去,这才多久啊!
不由得内心里萌生出一种挫败感,太打击人了吧!
史蒂芬教授倒是对陆舟这个表现不感到意外,毕竟是陈可是将其天赋与陶哲轩一比的人。
“答案的确是n(2n+1)。”
见陆舟准备要回到位置上去,史蒂芬教授喊了一声。
“陆,我这里还有一道题目,不知道你敢不感兴趣。”
听到有题目,陆舟眼前一亮,转过身问:“什么题目?”
“我听陈说你在丢番图方程上有些研究?”史蒂芬笑了笑,说话的同时走上讲台,拿起粉笔。
“那我就给你出一道‘简单’的丢番图方程。”
陆舟就在讲台前一米处,眼神不移地望着黑板。
【如何计算x3+y3+z3=33的一组整数解?】
陆舟脸色却逐渐变得凝重。
有许多数学题看起来挺简单的,但问题通常都有非常复杂的解。
比如史蒂芬教授出的这道题目就是这般。
除了陆舟其他七名光华大学的学生都是一脸懵逼,也就只有郑天宇看着题目感到似乎在哪里看到过,可一时想不起来了。
张磊挠着头发,一脸的呆滞。
“这特么真的有答案???”
简直是无力吐槽了,张磊只感觉头皮发麻。
再看看小伙伴郑天宇,同样很茫然得样子。
其他没有名字的就更不用说了。
将所有人脸部变化都纳入眼球的史蒂芬教授脸色平静,他好奇地望着陆舟。
他想知道,这道题陆舟能够做得出来吗?
陆舟眉头紧锁,这道题的棘手出乎他的意料。
而且他也认出了史蒂芬教授出的这道题目。
这要往前溯源到【x3+y3+z3=3】这个方程式。
很多人肯定会想到【1、1、1】这个整数解,实际上还有第2组整数解,是【4、4、-5】。
但,会不会有第三组整数解呢?
1953年,数学家louismordell便提出这样的一个疑问。
有意思的是,这个看似没技术含量的问题,困扰了数学界很久,直到今日都没有解决。
再到1992年,又一个数学家rogerheath-brown在研究弱近似原则失效形式x3+y3+z3=kw3的零点密度问题时,提出了一个猜想:对于任意一个正数k?±4(mod9),丢番图方程k=x3+y3+z3有无穷多组整数解(x,y,z)。
【如果没学过初等数论的话,就把k?±4(mod9)看做k≠9n+4,也就是k≠9n+4或k≠9n+5】
每个k都有无穷多组整数解。
当前数学界在对于k小于100的情况下,除了k=3的第三组整数解以外,只有k=33、42没有找到整数解。
一个困扰数学界还没解决的问题,被史蒂芬教授拿出来做考题。
陆舟真的想问问对方:教授,那您知道答案吗?
他没有说,反倒精神格外振奋。
一道难倒全球数学界几十年的难题。
要是……被他解决了,岂不是很酷?
陆舟专心致志看着题目,大脑开始疯狂运转。
先要明白为什么数学家heath-brown的猜想中为什么要有k?±4(mod9)的条件。
已知任何一个整数都可以写作如下三种形式中的一种,3k,3k-1,3k+1,再分别计算它们的立方:
(3k)3=27k3
(3k-1)3=27k3-27k2+9k-1
(3k+1)3=27k3+27k2+9k+1
三者被9整除的余数分别为0,-1,1,所以对于任意整数x,有x3≡0,±1(mod9)。
再根据同余运算的基本性质,……(省略)……由此可知,当k≡±4(mod9)时,方程不存在整数解。
所以,在求解方程k=x3+y3+z3时,不需要考虑k≠9n+4或k≠9n+5的情况。
陆舟仍在继续思考,教室里陷入了一股寂静当中。
郑天宇、张磊等7名学生都在抓耳挠腮中,这问题都超纲了啊!
史蒂芬教授也只是笑而不语得站在一旁看着。
能解开这道题唯一的希望便是在陆舟的身上。
又过了几分钟,离下课时间不到10分钟了。
陆舟突然动了!
走到讲台前,拿起粉笔不停歇地写着。
【assumex3+y3+z3=k>0,|x|>|y|>|z|≥√k,k≡±3(mod9)cubefree.】
【k-z3=x3+y3=(x+y)(x2-xy+y2)】
【defined:=|x+y|sothatzisacuberootofkmodulod.】