他总不能告诉韦伯,自己忽然想到基尔霍夫原先是他的助手,如今转投到了法拉第手下做事,想看看韦伯有没有什么牛头人的表现吧.....
咳咳......
而就在徐云和韦伯说话的间隙。
在鼓捣设备的基尔霍夫也拍了拍手,对法拉第道:
“教授,设备已经准备好了。”
法拉第点点头,来到桌子边缘,指着阳极一端的法拉第筒道:
“辛苦了,古斯塔夫,按照计划开始吧。”
基尔霍夫点了点头,快步来到法拉第桶边上:
“好的,教授。”
待基尔霍夫落位后。
法拉第先将磁极阻断,接着开始调整阴极射线,使其能够过一条狭缝进入阳极内的法拉第筒。
同时抬起头,对基尔霍夫问道:
“准备好了吗,古斯塔夫,我要进来了。”
“我没问题,教授。”
“那好,我倒数三个数,三...二...一...开始!”
“.....教授,反馈很剧烈,20%...43%...59%...83%....快满了快满了,教授再不停就要溢出来了!”
咔哒——
法拉第连忙终止了射线照射,轻轻抹了把头上的汗水。
还好自己停的快,要不静电计就要超限了。
没错,静电计。
应该不会有人想到别的地方去吧?
随后法拉第走到静电计边上,扫了扫数值表:
“9.6X10^6库伦.....古斯塔夫,刚才过去了多久时间?”
基尔霍夫看了眼手上的秒表:
“15.6秒。”
法拉第微微颔首,示意古斯塔夫将计算表清零。
接着又加入了一根热电偶,第二次开始了照射。
整个流程与头一次大同小异,唯一的变量就是随着光线的照入,热电偶很快开始升温。
法拉第则掐着秒表,认真的记着数:
“12.5...13.4....15.6秒,停!”
喊停时间后,法拉第看向基尔霍夫,问道:
“古斯塔夫,温度升高了多少度?”
基尔霍夫微微俯下身子,在刻度表上认真的比对了起来:
“唔......0.338度。”
法拉第将这个数字再次记到了笔记本上,用笔尖在下头划了道梗。
接着思索片刻,开始了最后一个环节:
解封刚才被密闭的磁极。
后世高中物理没考过零分的同学应该都知道。
带电粒子在匀强磁场中如果只受到到磁场力,那么它便会做圆周偏转运动。
归纳这个现象的人叫做洛伦兹,因此这个力又叫做洛伦兹力。
值得一提的是。
这个力的正确读法应该是洛伦兹+力,也就是人名加上力。
类似的还有库仑力,安培力等等。
不过或许是洛伦兹这个名字实在太过微妙了,所以包括许多高中老师在内的师生群体,都会管它叫做洛伦磁力。
1850年的洛伦兹还有三年才会出生,自然还没法提出洛伦兹力的概念。
但另一方面。
洛伦兹是带电粒子在匀强磁场中运动现象的归纳者,他首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点,不过却不是现象本身的发现者。
早在1822年的时候,德国人欧文斯便尝试过一个实验:
他将一个带电的小珠子放入磁场中,发现珠子会做圆弧状的运动。
洛伦兹之所以能在相关领域青史留名,所作的贡献并非只是提出一种猜想这么简单,而是因为他归纳了F=qvB*sin(v,B)这么一个公式。
就像大家说小牛发现了万有引力一样。
这句话其实是一种比较普众化的解释,严格意义上来说是错误的。
但是大众又没有涉及到更深层次的必要,所以就有了这么一个比较宽泛的说法。
靠着纯理论能封神的人,在科学史上其实并不多。
因此对于法拉第他们来说。
通过调整磁场的强度,做到将磁场力与电场力互相平衡,并不算一件很困难的事情。
在施加磁场后。
法拉第又关掉了金属电极,观察起了现象。
很快。
在电磁力的作用下,射线开始偏转。
法拉第拿着放大镜以及预先做好的刻度表,记录下了偏转的图形。
接下来的事情就很简单了。
只见法拉第拿起纸笔,在纸上写下了一个公式:
Q= Ne。
这个公式的由来很简单。
在第一个步骤中,法拉第利用静电计测量一定时间内金属筒获得的电量Q。
若进入筒内的微粒数为N,每个微粒所带的电量为e,那么Q便是N和e的乘积。
接着法拉第又翻了一页书,写下了另一个公式:
W= N·1/2mv2。
这个公式的意义同样非常简单:
经过同样时间后读出温升,若