此前曾经介绍过。
在原本历史中。
1781年的时候。
威廉·赫歇尔首次发现了天王星。
但因为它的轨道不符合万有引力定律,并且存在较大的误差。
所以过了一些年,勒维耶又独立计算出了海王星的存在。
可很快,天文界就又发现了一个问题:
海王星依旧只能解释天王星70%左右的轨道异常。
所以人们认为海王星的外轨道上,应该还有一颗行星存在。
最终汤博在1930年发现了它的存在,也就是赫赫有名的冥王星。
实话实说。
一开始,冥王星在数据上确实填补了剩下30%的空缺。
于是天文学界就开始开香槟了,并且一开就是40多年。
但随着詹姆斯·克里斯蒂在1978年6月22日发现了冥卫一,天文学家们突然惊讶的发现.....
自己香槟开的貌似有点早,半场三球领先居然被人翻盘了?!
国际天文联合会于1978年7月7日,正式向世界宣布克里斯蒂的发现,并于1985年将冥卫一命名为卡戎。
同时值得一提的是。
1978年虽然已经出现了射电望远镜,但詹姆斯·克里斯蒂使用的NOFS依旧是标准的反射式望远镜。
并且它的口径只有61英寸,也就是1.55米。
上一章便提及过。
以冥王星与地球的距离来说。
能被用非射电类天文望远镜观测到的卫星,它的体积一定不会小到哪里去。
最终天文界通过1985年至1990年之间冥王星和卡戎相互掩星和凌星的现象计算,确定卡戎了的直径大约是冥王星的一半。
这两颗天体互相潮汐锁定,形成了一个双矮行星系统。
也就是说。
它们的质心都位于冥王星以外。
这就相当于两个天体形成了一个概念上的‘组合星球’,这个组合星球施加的引力就和天王星的轨道对不上了——具体情况可以再去看看此前举过的那个铁球掉入沙地的例子。
换而言之。
冥王星的发现其实是有些误打误撞的数学巧合......
于是受此影响,天文学家们才会展开对柯伊伯带天体的观察。
再然后的事儿,就是Sedna,2004 VN112,2007 TG422,2010 GB174,2012 VP113,2013 RFS99这六颗天体的发现了。
它们的轨道有些某种微妙重合,高度疑似受到了某些外力的牵引。
于是让天文界做出了在奥尔特星云一带,可能有一个之前未被发现的巨行星或者橘子大小黑洞的猜测。
当然了。
考虑到部分笨蛋...咳咳,鲜为人同学对于天体观测的知识储备远远不足的情况,这里再科普一个知识。
那就是科学家们到底是怎么找寻系内行星的——这里的行星包括小行星。
系外行星的观测方法此前已经介绍过了一次,此处就先省略。
总之就是多普勒法和凌星法,另外还有微引力透镜和日冕仪等等。
至于系内行星呢,方法很简单:
大部分时候。
恒星在空中基本不动,行星则会以一定的角速度变换位置。
所以只要用图像自动搜索软件去对比某个周期——比如说半年或者一年内的图像,再筛选出角速度大于某个角秒的的星体就行了。
一般来说。
国内默认的数值是每小时1.3角秒以上。
国际则是每小时1.5角秒。
正因为对于这种方式的不了解,导致很多人都存在有一个思维误区:
小行星和系内行星都是哈勃之类的望远镜拍到。
比冥王星更远的系内天体,普通天文望远镜看不到它们。
这个思维大错特错。
举个例子。
此前提及过阋神星,它距离地球足足有97个天文单位——一天文单位1.5亿公里,也就是冥王星的2.5倍。
你猜猜迈克·布朗发现它的望远镜是什么规格?
答案是1.2米的反射式望远镜,生产工艺是1780年就可以达到的水平——不过在光路上经过了一些改良。
但这和工艺没关系,与设计思路有关。
所以并不是说一颗行星距离地球很远,普通望远镜就观测不到它了。
在不考虑详细画面的情况下。
讨论一架光学仪器能看多远,其实是没有意义的事情。
如果你愿意。
折射式望远镜甚至能看到180个天文单位外+12.6视星等以下的任何星体——虽然只是一个小点。
但若是不通过严密的数据分析,你永远不知道你看到的是什么星球。
所以筛选星体,这才是寻找系内行星最复杂的地方。
就像之前说的。
你选个好天气随手一拍天空,说不定照片里头就拍下了太阳系内的第九大或者第十大行星叻,但你压根不知道那玩意儿是啥