3和n=4的情况下,费马大定理成立。
十九世纪的高斯,绊倒在n=7。
……
超大数字的计算,用人力无法完成,但是现代的计算机可以代劳,在二十世纪七十年代,计算机已经证明,n小于100000的情况下,费马大定理都是成立的。
如果证明了莫德尔猜想,费马大定理的n就是有限的,数学家乐观的认为,性能不断提高的计算机会把剩下的n全部算出来。
事实上到了九十年代,计算机果然把n提高到1000000以内,后面却仍然遥遥无期……打个不太恰当的比方,全国首富的钱也是有限的,但是全部换成百元大钞让你数,假设一秒钟数一张,一辈子也数不完。
莫德尔猜想没有错。
费马大定理也没有错。
把莫德尔猜想和费马大定理联系起来,应该也没有错。
可惜在现有的技术水平下,通过莫德尔猜想证明费马大定理的这条路,其实是走不通的。
但是八十年代的数学家普遍认为,莫德尔猜想就是证明费马大定理的拦路虎,只要攻克了莫德尔猜想,后面都是计算机可以完成的重复性工作。
阿贝尔簇的椭圆曲线问题,又是莫德尔猜想的拦路虎。
看到曲军拿出阿贝尔簇的详尽证明,鲁齐生激动的嘴唇微微颤抖。