啊。]
[我们国家的‘火药雕刻师’更牛,能手工将误差控制将火药的误差控制在0.1毫米之内,比一根头发丝都要细。]
看着弹幕,韩元笑了笑。
在顶级的抛光、雕刻等领域,机械能做到的,手工基本也能做到,机械做不到的,手工有时候也能做到。
在这些领域,华国出过不少感人的事迹和大师级的人物。
不过随着科技的发展,终有一天手工雕刻、抛光这些工作的精度会跟不上机械这是必然的。
五纳米的铍铱合金镜面加工,这对于现实世界的抛光工程师来说,是一个无法逾越的天堑。
即便是给钟谦望远镜镜面加工的抛光工程师,也做不到这个级别。除非是像他一样,注射过人体开发药剂。
就目前来说,五纳米级的抛光,他还是可以做到的,不过他也不是没有极限的。
虽然没有具体的测试过,但韩元预估了一下自己,大抵极限差不多也就在五纳米左右了。
再低,他也无法保证镜面的崎岖度始终保持一致。
完成对铍铱合金镜面的初步检查工作后,韩元带上手套,小心翼翼的卡主合金镜面的切边,将其从机械臂上去了下来,送入超低温仪中。
用于红外线反射感应的铍铱合金镜面,最终是需要送入超低温太空,并且需要它长期保持零下两百度以下的低温状态。
所以对其进行超低温冷冻测试是并不可少的。
韩元需要这块铍铱镜面在零下两百三十度以下的超低温环境中保持自我形状,不发生任何形变,或者说线胀系统保持在0.0000004以下。
只有这样,才不会影响到这片铍铱合金镜面对红外光的反射和感应性能。
超低温仪启动,里面的温度迅速降低,通过传感仪,韩元观察着里面的情况。
不断下滑的温度曲线表示超低温仪里面的温度在稳定降低,很快,温度便已经突破了零下一百度。
确认温度下降异常后,韩元扭头看向铍铱合金镜面的检查数据。
通过显示在屏幕上的图表数据,可以含糊的知道处在超低温仪内部的合金镜面的状态,以及对应的红外反射数据
浏览了一下图表数据,确认在零下一百度时铍铱合金镜面没有出现任何皱缩后,他结束继续降低温度。
零下一百度虽然已经足够炎热了,但并不是终极目标。
这块铍铱合金最终需要面临零下两百三十度的超低温的考验,甚至如果在这个温度下,它还保持异常的话,后续还会面临更低的温度来检测它的性能。
当然,后续更低温度的检测,需要他完成整体的实验,确认铍铱合金能当做空间望远镜的镜面后再来做。
现在先完成零下两百三十度的检测,确认这个温度下铍铱合金没有问题就行。
时间流逝,超低温仪中的温度也在一点一点的降低,温度越是低,对于设备的整体要求就越高,且降低温度的速度也越慢。
如果说从零度降低到一百度需要五分钟的时间,那么从零下一百度降低到零下两百度需要最少三十分钟以上的时间。
再降低,花费的时间就更久了,
而要制造一个零下两百多度的超低温环境可不困难。
不仅需要建立一个保温能力超强的绝热空间,还需要使用种名的制冷方法。
虽然制冷原理家用冰箱差不多,但冷却剂可不是氟利昂,134a什么的。
而是液态氮。
氮气在经过高压后,在浓缩为液态时会释放掉巨大的热量,而减压汽化的时候,可以吸收大量的热,从而制造出来一个零下一百多度,接近零下二百度的低温环境。
不过液氮制冷也是有缺陷的。
那就是它无法突破本身自有的零下一百九十六度的温度。
如果还需要更低的温度,就要加上另一个制冷手段--激光治冷。没错,这种听起来像是医学上使用的手段,其实是应用在超低温制造上。
原理在于热力学基础。
念过初中物理的人都知道,一个物体的热能是由分子振动导致的,分子运动越剧烈,温度就越高。
当一个物体的分子运动全部停止的时候,在没有外界干扰的情况下,这个物体的温度就是绝对零度。
而激光制冷,就是通过使用激光产生的波动反向抵消分子运动。当分子运动降低的时候,温度也自然就降低下来了。
除了这种办法外,你还可以使用最难液化的气体‘氦气’来进行制造超低温环境制冷。
氦气相当难液化,但它液化后的温度是-269c,已经很接近绝对零度了。
利用这一特点,能制造出来接近零下两百五十度左右的超低温空间
不过要再低的话,还是得用上激光制冷技术。
耗费了一段时间,超低温制冷设备中的温度终于降低到了韩元的需求温度-230c。
将温度稳定在这个数据,韩元看向显示屏。
零下两百三十度的温度下,铍铱合金镜面出现了极为轻微的线胀。线胀数据在-0.000000289.
也就是